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Lattice Boltzmann scheme with real numbered solid density for the simulation of flow
in porous media

Orla Dardis and John McCloskey
School of Environmental Studies, University of Ulster, Coleraine, Northern Ireland

~Received 16 June 1997!

A modified lattice Boltzmann scheme for the simulation of flow in porous media is introduced, where
momentum loss due to the presence of solid obstacles to flow is incorporated into the evolution equation. A
real numbered parameter specified at each lattice node is related to the density of solid scatterers and represents
the effect of porous medium solid structure on hydrodynamics. This scheme removes both the need for spatial
and temporal averaging and the microscopic length scales associated with important classes of porous media.
A numerical study demonstrates the adherence of the approach to the Navier-Stokes equation with an effective
damping term. The potential use of the scheme to aid permeability predictions in realistic geological materials
is discussed.@S1063-651X~98!08404-9#

PACS number~s!: 47.55.Mh, 47.11.1j, 47.15.2x
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The original lattice gas automaton~LGA! approximation
to the Navier-Stokes equations@1# has undergone progres
sive improvements and refinements in recent years an
now well established as a viable model for fluid flow
porous media@2#. The theoretical background involving th
convergence of the LGA and later lattice Boltzmann~LB!
scheme to the Navier-Stokes equations, through derivatio
the macrodynamical equations for the large scale and l
term behavior of conserved quantities~fluid density and mo-
mentum!, is well documented@3–5#. The LGA approach
models a fluid as a system of identical discrete fluid partic
propagating along the links of a lattice from node to no
with interactions through collisions at lattice nodes such t
mass and momentum are conserved. However, particle
sities defined as Boolean variables make the microdynam
of the LGA intrinsically noisy, requiring statistical averagin
in lattice subregions over long times to obtain meaning
results. These statistical fluctuations were eliminated w
the development of the lattice Boltzmann model@6# which
neglects correlations between particles and models the la
gas using a Boltzmann equation where mean particle di
bution functions replace the individual particles at latti
nodes. Both the LGA and LB schemes are restricted by
form of the microscopic collision rules. This limits the rang
of transport properties of the modeled fluid and led to furt
developments in which the LGA collision operator was li
earized about its equilibrium distribution function to give
collision matrix @7#. Then, in the lattice Bhatagnar-Gros
Krook ~BGK! scheme, a further simplification replaced t
collision matrix with relaxation at a constant rate determin
by a single transport parameterv, the eigenvalue of the LB
collision matrix @8#.

Despite numerous publications on the theoretical ba
ground and accuracy of the approach through comparis
with traditional finite-difference schemes@9,10#, relatively
few researchers have focused on flow in porous me
@2,11–17#. This may be due in part to the need to use ve
simplified medium geometry so that direct comparisons w
traditional finite-difference solutions may be made. In su
571063-651X/98/57~4!/4834~4!/$15.00
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simulations, the porous medium is represented as a collec
of solid obstacles to flow. Boolean variables assigned to e
node of the simulation grid make the node a void part of
pore space and open to flow, or part of the rock matrix a
closed to flow. At solid nodes, a ‘‘bounce-back’’ or no-sl
boundary condition is imposed on any incident fluid partic
reflecting it back into its incoming direction. This no-sli
condition is a first order approximation to the zero wall v
locity condition@19# and significant errors can be introduce
when the dimension of the void space is too small~relative to
the particle mean free path! for hydrodynamic correlations to
develop, thus placing limitations on the size of porous me
which can be studied. It has been reported that any v
space within the modeled medium needs to be at least tw
the mean free path of the fluid particles in order to reso
the flow properly@2,18#. In a recent study of flow in porous
media@17#, the physical dimension of the modeled mediu
was 0.2 cm. For most practical applications the scale of
terest is much larger but the computational requirements
LB simulation using a larger scale porous structure would
too great. Therefore this Boolean definition of pore spa
although allowing flexibility in the introduction of arbitrary
microstructure, introduces a microscopic length scale to
medium, as rock structure only develops a discrete app
ance when viewed under the microscope. This problem
been addressed recently in flow simulations@16# where the
porous medium is represented by acontinuouspermeability
distribution. These permeabilities were determined fro
LGA simulations of Darcy flow with a probabilistic no-slip
boundary condition. A power-law relationship between t
probability of occurrence of a solid~medium! node and the
measured permeability allowed a permeability distribution
be defined for use with the LGA. This eliminated the expli
Boolean representation of medium structure and its asso
tion with a characteristic microscopic scale. However,
scheme still suffered from the statistical fluctuations of t
LGA. The reasoning behind the modified scheme outlined
the following sections, namely, the elimination of the micr
scopic Boolean porous structure, is in a similar spirit to@16#.
4834 © 1998 The American Physical Society
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However, the proposed modification makes use of the
approach, thus avoiding the noisy hydrodynamics associ
with the LGA, and incorporates the porous medium inter
tion term directly into the evolution equation. We begin wi
a brief outline of the LB scheme, followed by a descripti
of its modification and then compare the results obtain
with relationships found for a LGA study using Boolea
solid scatterers.

Six moving particle distributionsNi $ i 51,...,6%, and one
rest particle distribution,Ni $ i 50% reside at the nodes of
two-dimensional~2D! hexagonal lattice. The rest partic
population contributes to the fluid density but not to mome
tum. Particle distributions are assigned unit velocitiesei in
one of the six lattice directionsi where

ei5Fcos
2p~ i 21!

6
, sin

2p~ i 21!

6 G , i 51,...,6 ~1!

and the local fluid densityr and velocityu at each node are
given by

r5(
i 50

6

Ni ,

ru5(
i 51

6

Niei . ~2!

The lattice BGK scheme@8# based on the original Frisch
Hasslacher-Pomeau model@4# is implemented using an evo
lution equation for the propagation and interaction of t
fluid particle populations on the lattice. The fluid partic
density Ni , moving in direction i , at nodex and time t
1Dt is given by

Ni~x,t1Dt !5Ni~x2ei ,t !1DNi
BGK~x2ei ,t !, ~3!

where

DNi
BGK~x2ei ,t !5v@Ni

eq~x2ei ,t !2Ni~x2ei ,t !#. ~4!

Equation~4! accounts for particle collisions~the transfer of
momentum! through relaxation to equilibrium at a rate dete
mined by the relaxation parameterv. The relaxation param
eter controls the viscosity of the fluid throughn
51/8@(2/v)21#. The equilibrium populationsNeq are given
by

Ni
eq~x,t !5r~x,t !@ 1

7 1 1
3 ~ei•u!1 2

3 ~ei•u!~ei•u!2 1
6 ~u•u!#,

N0
eq~x,t !5r~x,t !@ 1

7 2~u•u!# ~5!

and are specifically constructed to recover the Navier-Sto
equations in the low Mach number limit@8#.

The porous medium no-slip boundary condition is inc
porated into Eq.~3! using the following LB scheme:

Ni~x,t1Dt !5Ni~x2ei ,t !1DNi
PM~x,t !1DNi

BGK~x2ei ,t !,

DNi
PM~x,t !5ns~x!@Ni 13~x,t !2Ni~x2ei ,t !#. ~6!

The addition ofDNi
PM accounts for the effect of the porou

medium~PM! on the fluid and determines the redistributio
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of particle momentum. The parameter which controls t
partitioning of fluid momentum is the continuous variab
ns(x), defined as the solid scatterer density per lattice nodx
where 0,ns(x),1. For example, 100 solid scatterers on
lattice of dimension 1003100 would result in an averag
scatterer density per node of 0.01 in the LGA, while t
same situation is represented here by a uniform distribu
of ns(x)50.01. Whenns(x)50, DNi

PM50 and Eq.~6! re-
duces to Eq.~3! for a free fluid in a void medium. For the
opposite case where a node is given the value ofns(x)51,
the no-slip condition applies and the node is rendered imp
meable.

Since there are no analytical solutions for fluid flow
arbitrary porous medium structure, the scheme is tested
reference to relationships derived for a LGA study of flo
where the porous medium is represented by a random di
bution of solid scatterers@11#. To simulate Poiseuille flow,
the boundary conditions, periodic inx and no slip iny @20#
are imposed on a 1282 lattice. The flow is driven by a body
force to add momentum in the positivex direction. The ana-
lytical solution to the usual Navier-Stokes equation for the
boundary conditions is the equation for a parabola cente
around the axis of the channel. From@11#, the addition of
fixed solid scatterers reduces the fluid velocity, modifyi
the usual Navier-Stokes equation through the introduction
a velocity dependent damping terma,

n
d2u

dy22au5
1

r

dp

dx
. ~7!

The solution to Eq.~7! is

u~y!52
1

a

1

r

dp

dx F12
cosh@r ~y2H/2!#

cosh~rH /2! G , ~8!

where the coefficientsa and r are related through

r 5Aa/n ~9!

and the no-slip condition is applied at the channel wa
u(0)50 andu(H)50, dp/dx is the applied pressure grad
ent,n5h/r is the kinematic viscosity of the fluid, andr and
a are parameters relating tons(x). By considering the mi-
croscopic particle-scatterer interactions of the LGA and
ing the Boltzmann approximation which relies on low sc
terer densities, a relationship betweena andns was derived
@11#,

a52ns . ~10!

Darcy’s law was then modified to

ux5
1

ra

dp

dx
~11!

thus relating the permeabilityk of the medium to the damp
ing terma through

k5
h

ra
5

n

a
5

n

2ns
. ~12!
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Figure 1 shows two examples of the measured fluid velo
profiles for different homogeneous distributions ofns(x).
The effective resistance to flow is quantified by obtaininga
and r from Eq. ~8!. This procedure requires no statistic
averaging and is repeated for each uniform distribution
ns(x),0.02. In Fig. 2, the parametersa and r , obtained
from velocity profiles similar to Fig. 1, allowed extraction o
the viscosityn using Eq.~9!. The measured value of 0.12
compares well with the analytical prediction ofn50.125 for
v51.0 from the BGK approximation. The relationship b
tweena and ns is illustrated in Fig. 3 wherea52.04ns in
good agreement with Eq.~10!. Finally, for different values of
the applied body force, flow rates through the media w
measured and permeabilities calculated from Darcy’s
~11!. Figure 4 shows the relationship between lattice perm
ability k and ns(x) from Eq. ~12!. The best fit to the curve
gives a kinematic viscosity ofn50.1265. The relationship
betweenk, a, and r derived in@11# for Darcy’s law in the
presence of scatterers hold, implying that the model in

FIG. 1. Modified velocity profiles for different homogeneou
distributions ofns(x) with the corresponding fit to Eq.~8!. The
introduction of a nonzerons(x) lowers the average flow velocity
As ns(x) is increased, the curvature of the profile decreases, lea
to an increase in the measured damping terma from @11#.

FIG. 2. Estimation of the fluid viscosity using Eq.~9!. The mea-
sured viscosity of 0.127 is in good agreement with the theoret
value of 0.125.
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duced here behaves in a similar fashion to an equiva
LGA scheme defined with a Boolean distribution of sol
scatterers. The results are expected to hold for extensio
the model to three dimensions, with the additional memo
requirement of a real numberns(x) at each lattice node in
place of the Boolean variable used in previous 3D flow sim
lations @12#.

The range ofns(x) investigated in this study has bee
limited to values corresponding to a dilute system for co
parative purposes and therefore the results presented are
valid for highly porous media. The range of porosity valu
for consolidated rock structure is considerably lower and
behavior of the model at high solid density has also be
investigated@23#, where permeability scaling laws consiste
with percolation theory and experiment have been obtain
The advantage of applying a model using Eq.~6! to the prob-
lem of flow in porous media can be explained by visualizi
the porous medium as a continuous space dependent d
bution ofns(x) rather than modeling detailed medium stru
ture at a scale below the limit of meaningful laboratory a
field studies. The elimination of Boolean porous structu
allows the effect of correlated and anisotropic transport pr
erty distributions to be investigated by rastering the desi

ng

al

FIG. 3. Measured relationship between damping parametea
and scatterer densityns(x). The result ofa52.04ns compares well
with Eq. ~10!.

FIG. 4. The relationship between lattice permeabilityk and
ns(x) from Eq. ~12! for homogeneous distributions ofns(x).
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statistical distribution ofns(x) onto the lattice. The depen
dence of transport properties in porous media on the siz
the medium @21# and the determination of effective o
equivalent transport parameters through upscaling is an
portant issue in groundwater hydrology and the petrole
th
of

-

industry @22#. Work using the scheme to investigate the h
drodynamic behavior of correlated and anisotropic prope
fields and the dependence on system size and grid resolu
~through simulations performed on variable grid sizes a
using different rescaling methods! is near completion.
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