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Lattice Boltzmann scheme with real numbered solid density for the simulation of flow
in porous media
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A modified lattice Boltzmann scheme for the simulation of flow in porous media is introduced, where
momentum loss due to the presence of solid obstacles to flow is incorporated into the evolution equation. A
real numbered parameter specified at each lattice node is related to the density of solid scatterers and represents
the effect of porous medium solid structure on hydrodynamics. This scheme removes both the need for spatial
and temporal averaging and the microscopic length scales associated with important classes of porous media.
A numerical study demonstrates the adherence of the approach to the Navier-Stokes equation with an effective
damping term. The potential use of the scheme to aid permeability predictions in realistic geological materials
is discussed.S1063-651X98)08404-9

PACS numbes): 47.55.Mh, 47.1%tj, 47.15-x

The original lattice gas automatdhGA) approximation  simulations, the porous medium is represented as a collection
to the Navier-Stokes equatiofi$] has undergone progres- of solid obstacles to flow. Boolean variables assigned to each
sive improvements and refinements in recent years and isode of the simulation grid make the node a void part of the
now well established as a viable model for fluid flow in pore space and open to flow, or part of the rock matrix and
porous medid?2]. The theoretical background involving the closed to flow. At solid nodes, a “bounce-back” or no-slip
convergence of the LGA and later lattice BoltzmafiB)  boundary condition is imposed on any incident fluid particle,
scheme to the Navier-Stokes equations, through derivation a&flecting it back into its incoming direction. This no-slip
the macrodynamical equations for the large scale and longondition is a first order approximation to the zero wall ve-
term behavior of conserved quantitigkiid density and mo- locity condition[19] and significant errors can be introduced
mentun), is well documented3-5]. The LGA approach when the dimension of the void space is too srrallative to
models a fluid as a system of identical discrete fluid particlesthe particle mean free patfor hydrodynamic correlations to
propagating along the links of a lattice from node to nodedevelop, thus placing limitations on the size of porous media
with interactions through collisions at lattice nodes such thatvhich can be studied. It has been reported that any void
mass and momentum are conserved. However, particle despace within the modeled medium needs to be at least twice
sities defined as Boolean variables make the microdynamiafie mean free path of the fluid particles in order to resolve
of the LGA intrinsically noisy, requiring statistical averaging the flow properly{2,18]. In a recent study of flow in porous
in lattice subregions over long times to obtain meaningfulmedia[17], the physical dimension of the modeled medium
results. These statistical fluctuations were eliminated wittwas 0.2 cm. For most practical applications the scale of in-
the development of the lattice Boltzmann mo{&] which  terest is much larger but the computational requirements of a
neglects correlations between particles and models the lattideB simulation using a larger scale porous structure would be
gas using a Boltzmann equation where mean particle distritoo great. Therefore this Boolean definition of pore space,
bution functions replace the individual particles at latticealthough allowing flexibility in the introduction of arbitrary
nodes. Both the LGA and LB schemes are restricted by thenicrostructure, introduces a microscopic length scale to the
form of the microscopic collision rules. This limits the range medium, as rock structure only develops a discrete appear-
of transport properties of the modeled fluid and led to furtherance when viewed under the microscope. This problem has
developments in which the LGA collision operator was lin- been addressed recently in flow simulati¢t§| where the
earized about its equilibrium distribution function to give a porous medium is represented by@ntinuouspermeability
collision matrix[7]. Then, in the lattice Bhatagnar-Gross- distribution. These permeabilities were determined from
Krook (BGK) scheme, a further simplification replaced the LGA simulations of Darcy flow with a probabilistic no-slip
collision matrix with relaxation at a constant rate determinedboundary condition. A power-law relationship between the
by a single transport parameter the eigenvalue of the LB probability of occurrence of a solitmedium node and the
collision matrix[8]. measured permeability allowed a permeability distribution to

Despite numerous publications on the theoretical backbe defined for use with the LGA. This eliminated the explicit
ground and accuracy of the approach through comparisorBoolean representation of medium structure and its associa-
with traditional finite-difference schemd®9,10], relatively  tion with a characteristic microscopic scale. However, the
few researchers have focused on flow in porous mediagcheme still suffered from the statistical fluctuations of the
[2,11-17. This may be due in part to the need to use veryLGA. The reasoning behind the modified scheme outlined in
simplified medium geometry so that direct comparisons withthe following sections, namely, the elimination of the micro-
traditional finite-difference solutions may be made. In suchscopic Boolean porous structure, is in a similar spirit6).
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However, the proposed modification makes use of the LBof particle momentum. The parameter which controls this
approach, thus avoiding the noisy hydrodynamics associatgghrtitioning of fluid momentum is the continuous variable
with the LGA, and incorporates the porous medium interacng(x), defined as the solid scatterer density per lattice node
tion term directly into the evolution equation. We begin with where 0<n¢(x)<1. For example, 100 solid scatterers on a
a brief outline of the LB scheme, followed by a description lattice of dimension 108100 would result in an average
of its modification and then compare the results obtainedcatterer density per node of 0.01 in the LGA, while the
with relationships found for a LGA study using Boolean same situation is represented here by a uniform distribution
solid scatterers. of ng(x)=0.01. Whenng(x)=0, AN"M=0 and Eq.(6) re-

Six moving particle distributiondl; {i=1,...,6;, and one  duces to Eq(3) for a free fluid in a void medium. For the
rest particle distributionN; {i =0} reside at the nodes of a opposite case where a node is given the valua%)=1,
two-dimensional(2D) hexagonal lattice. The rest particle the no-slip condition applies and the node is rendered imper-
population contributes to the fluid density but not to momen-meable.
tum. Particle distributions are assigned unit velocitesn Since there are no analytical solutions for fluid flow in
one of the six lattice directionswhere arbitrary porous medium structure, the scheme is tested with

_ ) reference to relationships derived for a LGA study of flow
2m(i=1) sin 2m(i—1) i=1,...6 (1 where the porous medium is represented by a random distri-
6 ' 6 ’ bution of solid scatterergl1]. To simulate Poiseuille flow,
the boundary conditions, periodic ’nand no slip iny [20]
are imposed on a 128attice. The flow is driven by a body

e=|cos

and the local fluid density and velocityu at each node are

given by force to add momentum in the positixedirection. The ana-
Iytical solution to the usual Navier-Stokes equation for these
p= z N, boundary conditions is the equation for a parabola centered
=0 around the axis of the channel. Frdrl], the addition of
. fixed solid scatterers reduces the fluid velocity, modifying
the usual Navier-Stokes equation through the introduction of
pu=2 Nig . (2)  a velocity dependent damping tera
The lattice BGK schem¢8] based on the original Frisch- @_ _1ldp 7
Hasslacher-Pomeau modd] is implemented using an evo- g dy? au= p dx’ 0
lution equation for the propagation and interaction of the
fluid particle populations on the lattice. The fluid particle The solution to Eq(7) is
density N;, moving in directioni, at nodex and timet
+At is given by 11dp coshr(y—H/2)]
uy== g o ax| cosh(rH/2) |’ ®)
Ni(x,t+At)=N;(x—¢ ,t) + AN (x—¢ 1), (3) ap
where where the coefficienta andr are related through
ANP(x—g ) = o[Nf{x—& ) =Ni(x—&,0)]. (4) r=\alv ©

Equation(4) accounts for particle collision@he transfer of and the no-slip condition is applied at the channel walls,
momentum through relaxation to equilibrium at a rate deter- y(0)=0 andu(H)=0, dp/dx is the applied pressure gradi-
mined by the relaxation parameter The relaxation param- ent, v= 7/p is the kinematic viscosity of the fluid, amdand
eter controls the viscosity of the fluid through  « are parameters relating tn(x). By considering the mi-
=1/8(2/w)—1]. The equilibrium populationsl®@are given  croscopic particle-scatterer interactions of the LGA and us-

by ing the Boltzmann approximation which relies on low scat-
. - , . terer densities, a relationship betweemandng was derived
NFAX ) =p(x,D)[ 7+ 5(6-u)+5(6-u)(e-u)—5(u-w], [11],
NGY X, t)=p(x,H)[ 7 —(u-u)] (5 a=2ns. (10

and are specifically constructed to recover the Navier-StokeBarcy’s law was then modified to
equations in the low Mach number linji8].
The porous medium no-slip boundary condition is incor- 1 dp
porated into Eq(3) using the following LB scheme: Ux:p_a dx (11)
=N (x— PM BGK(y—
NiO T AD =Ni(x =6, D) FANTEOGH AN (x =6, ), thus relating the permeability of the medium to the damp-

ANPY(OX, D) =G0 [Ng 506D~ Ni(x—g D], () 9 terme through

The addition ofANPM accounts for the effect of the porous K= m_r_ (12)
medium(PM) on the fluid and determines the redistribution pa a 2ng
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FIG. 3. Measured relationship between damping parameter

FIG. 1. Modified velocity profiles for different homogeneous i
and scatterer density,(x). The result ofa=2.0dn, compares well

distributions ofng(x) with the corresponding fit to Eq8). The i
introduction of a nonzermg(x) lowers the average flow velocity. With Ed. (10).

As ng(x) is increased, the curvature of the profile decreases, Ieading ) . ) .

to an increase in the measured damping terfrom [11]. uced here behaves in a similar fashion to an equivalent
LGA scheme defined with a Boolean distribution of solid
scatterers. The results are expected to hold for extension of

Figure 1 shows two examples of the measured fluid velocitghe model to three dimensions, with the additional memory
profiles for different homogeneous distributions mf(x). ~ requirement of a real numbery(x) at each lattice node in
The effective resistance to flow is quantified by obtaining place of the Boolean variable used in previous 3D flow simu-
and r from Eq. (8). This procedure requires no statistical lations[12].

averaging and is repeated for each uniform distribution of The range ofng(x) investigated in this study has been
ny(x)<0.02. In Fig. 2, the parameters and r, obtained limited to values corresponding to a dilute system for com-
from velocity profiles similar to Fig. 1, allowed extraction of parative purposes and therefore the results presented are only
the viscosityr using Eq.(9). The measured value of 0.127 valid for highly porous media. The range of porosity values
compares well with the analytical prediction £ 0.125 for ~ for consolidated rock structure is considerably lower and the
w=1.0 from the BGK approximation. The relationship be- behavior of the model at high solid density has also been
tweena andn; is illustrated in Fig. 3 wherex=2.0qn in  investigated23], where permeability scaling laws consistent
good agreement with E¢10). Finally, for different values of ~With percolation theory and experiment have been obtained.
the applied body force, flow rates through the media werel he advantage of applying a model using Egj.to the prob-
measured and permeabilities calculated from Darcy’s lawem of flow in porous media can be explained by visualizing
(11). Figure 4 shows the relationship between lattice permethe porous medium as a continuous space dependent distri-
ability k andng(x) from Eq. (12). The best fit to the curve bution ofng(x) rather than modeling detailed medium struc-
gives a kinematic Viscosity of=0.1265. The re|ati0nships ture at a scale below the limit of meaningful Iaboratory and

betweenk, @, andr derived in[11] for Darcy’s law in the field studies. The elimination of Boolean porous structure
presence of scatterers hold, implying that the model intro&llows the effect of correlated and anisotropic transport prop-

erty distributions to be investigated by rastering the desired
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FIG. 2. Estimation of the fluid viscosity using E®). The mea-
sured viscosity of 0.127 is in good agreement with the theoretical FIG. 4. The relationship between lattice permeabiktyand
value of 0.125. ng(x) from Eq.(12) for homogeneous distributions af(x).
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statistical distribution ohg(x) onto the lattice. The depen- industry[22]. Work using the scheme to investigate the hy-
dence of transport properties in porous media on the size afrodynamic behavior of correlated and anisotropic property
the medium[21] and the determination of effective or fields and the dependence on system size and grid resolution
equivalent transport parameters through upscaling is an imthrough simulations performed on variable grid sizes and
portant issue in groundwater hydrology and the petroleunusing different rescaling methods near completion.
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